

Introduction to the Gas Turbine Combustion Short Course

Dr Vishal Sethi
Centre for Propulsion and Thermal Power Engineering
School of Aerospace, Transport and Manufacturing

www.cranfield.ac.uk

Cranfield University

Gas Turbine Combustion Short Course:

Module Contributors

Dr. Vishal (Bobby) Sethi

Associate Prof. - Gas Turbine Combustion and Environmental Impact Head – Low Emissions Technologies and Combustion Group Centre for Propulsion and Thermal Power Engineering School of Aerospace, Transport and Manufacturing, Cranfield University, UK

Professor Pierre Gauthier

RAEng Visiting Professor in Low Emissions Combustion Modelling Centre for Propulsion and Thermal Power Engineering, School of Aerospace, Transport and Manufacturing, Cranfield University and Senior Combustion Key Expert and Global Technical Focal Point for Combustion CFD Siemens Energy (Canada)

Dr. Marco Zedda

Research and Technology Manager – Aerothermal Methods and Tools Rolls- Royce Derby, UK

Dr. Devaiah Nalianda

Senior Lecturer - Environmental Performance of Integrated Propulsion Systems Centre for Propulsion and Thermal Power Engineering School of Aerospace, Transport and Manufacturing, Cranfield University, UK

Dr. Dave Abbott

Visiting Fellow – Gas Turbine Combustion Thermoacoustics Centre for Propulsion and Thermal Power Engineering School of Aerospace, Transport and Manufacturing, Cranfield University, UK

Gas Turbine Combustion Short Course Module: Timetable

Time	Day 1 - 21/09	
Time	Title	Contributor
0900 – 0950	Intro + Design considerations and sizing methodologies 1	VS
1000 – 1050	Design considerations and sizing methodologies 2	VS
1110 – 1200	Aero-derivative and large stationary gas turbine combustors 1	PG
1210 – 1300	Aero-derivative and large stationary gas turbine combustors 2	PG
	Lunch	
1400 – 1450	Design considerations and sizing methodologies 3	VS
1500 – 1550	Combustion efficiency	VS
1610 – 1700	Overview of Gas turbine generated pollutants	VS

Gas Turbine Combustion Short Course Module: Timetable

Time	Day 2 - 22/09	
	Title	Contributor
0900 – 0950	Low emissions combustor design concepts (aero)	VS
1000 – 1050	Low emissions combustor design concepts (stationary)	PG
1110 – 1200	Gas turbine combustor thermoacoustics 1	DA
1210 – 1300	Gas turbine combustor thermoacoustics 2	DA
	Lunch	
1400 – 1450	Role of CFD in combustor design and development 1	PG
1500 – 1550	Combustor heat transfer and cooling 1	VS
1610 – 1700	Combustor heat transfer and cooling 2	VS

Gas Turbine Combustion Short Course Module: Timetable

Time	Day 3 - 23/09	
	Title	Contributor
0900 – 0950	Combustion challenges - changing fuel gas compositions	DA
1000 – 1050	Gas turbine combustor thermoacoustics 3	MZ
1110 – 1200	CFD for aero-engine combustion applications 1	MZ
1210 – 1300	CFD for aero-engine combustion applications 2	MZ
	Lunch	
1400 – 1450	Role of CFD in combustor design and development 2	PG
1500 – 1550	Contrails 1	DN
1610 – 1700	Contrails 2	DN

Gas Turbine Combustion Short Course Module:

Timetable – Hydrogen and Decarbonisation Scenarios Workshop

Time	Day 4 – 24/09			
	Title	Contributor		
0830 – 0845	Introductions and welcome	PP		
0845 – 0945	Hydrogen airliners	PP		
0945 – 1100	Hydrogen and low NOx	VS		
Break				
1115 – 1230	Contrails and abatement	DN		
	Lunch			
1330 – 1430	Hydrogen R&D	VS		
1430 – 1545	Aircraft electrification	NM		
1545 – 1630	Decarbonising a country	PP		
	Discussion			
	Close			